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Abstract-Correlation equations for statistically homogeneous fluctuations of velocity and temperature 
at two points in an infinite uniform shear flow are derived with allowance for a temperature gradient 
in an arbitrary direction in a plane normal to the flow direction. The initially excited isotropic 
turbulence decays and becomes anisotropic with time. After Fourier transfo~ations arc introduced, the 
resulting spectral equations are solved for the case of weak turbulence wherein triple correlations 
are neglected compared with double correlations. Spectra of turbulent heat transfer and temperature 
fluctuation are calculated. For large nondimensional velocity gradients, the thermal eddy diffusivity in 
the direction normal to the velocity gradient is larger than that in the direction of the velocity 
gradient. The thermal eddy diffusivity in the velocity-gradient direction tends to equal the momentum 

eddy diffusivity at large velocity gradients. 
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NOMENCLATtJm 

transverse velocity gradient, d Ur/d.xs ; 
dimensionless transverse velocity 
gradient, (t - to) dU&l.xa; 
transverse temperature 
aT/axz; 
transverse temperature 
aT/axs ; 
constant that depends 
conditions; 
arbitrary points; 
Prandtl number, V/U; 
instantaneous pressure; 
distance from P to P’; 
distance vector from P to 
component of r; 
average temperature; 

gradient, 

gradient, 

on initial 

p’; 

lnstantaneo~ temperature, 
transfer term for temperature fluctua- 
tions obtained by integrating 
~188/& in equation (25) over the 
angular co ordinates of a wave 
number sphere; 
time; 
initial value off; 
an average velocity component ; 
instantaneous velocity component; 

Uk, 

Xk, 

a, 
r2, f3, 

fluctuating part of velocity com- 
ponent defined by equation (4); 
space coordinate; 
thermal diffusivity; 
spectrum functions of 7tt2 or 7u3 

defined by equation (29); 
Fourier transform of TF defined by 
equation (15) ; 
Fourier transform of uf71 defined by 
equation (16); 
spectrum function of 3 defined by 
equation (30); 
Fourier transform of 771 defined by 
equation (17) ; 
equals 1 for i = j and equals 0 for 
i#j; 
eddy diff~ivity for moments trans- 
fer defined by equation (34); 
eddy diffusivity for heat transfer 
defined by equation (34); 
Fourier transform of 7 defined by 
equation (19); 
Fourier ~ansfo~ of 3 defined by 
equation (20); 
spherical coordinate in wave- 
number space ; 
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wave number ; 
dimensionless wave number, 
.ll2(t _ to)‘!? K; 

wave number vector ; 
component of wave number vector; 
kinematic viscosity; 
dummy variable ; 
density; 
fluctuating part of temperature de- 
fined by equation (3); 
spherical coordinate in wave 
number space ; 

Fourier transform of z defined by 
equation (18). 

later studied when it is weak enough for the 
triple correlations of velocity or temperature 
fluctuations to be neglected. 

Early statistical investigations of turbulent 
heat transfer were concerned with the isotropic 
turbulence that arises in the absence of a mean 
velocity gradient [3, 41. For shear flows, numeri- 
cal values of the velocity correlations were first 
presented by Deissler [5]. Additional studies of 
heat transfer, pressure fluctuations and velocity 
correlations were accomplished by him [2. 61 
and Fox 171. In the present effort, these studies 
are extended to include the effects of a tempera- 
ture gradient with components not only in the 
direction of the velocity gradient (the subject of 
[2]) but also in the direction normal to both the 
velocity vector and the velocity gradient. A 
similar arrangement of vectors occurs in a tube 
flow with circumferential variations in heat 
transfer. In the following development, tempcra- 
ture gradient effects are shown to be separable 
into components; consequently, the results of 
the present investigation supplement those of 

PI. 

Subscripts 

i, .i, k, values equaling 1, 2, or 3 and desig- 
nating coordinate directions; 

(2), (3)> scalar quantities that arise from the 
effects of iYT/c’.n or i3T/t?x~. 

Superscripts 

3 point P’; 
-5 average value ; 
* 9 dimensionless quantity. 

INTRODUCTION 

PHENOMENOLOGICAL theoriesof turbulence,which 
are reviewed in [ 11, have recently received support 
from statistical turbulence theory. In a uniform 
shear flow with decaying turbulence, Deissler [2] 
found a tendency of the ratio of t,ddy diffusivi- 
ties for heat and momentum to al,proach unity 
for conditions that correspond roughly to 
steady channel flow. Developments of this nature 
do not form a basis for supplanting phenomeno- 
logical theories, which are the only practical 
means of organizing quantities of experimental 
evidence. Rather, statistical theories further the 
understanding of turbulence and may, in some 
instances, point the way for new extensions of 
the phenomenological theories when no ex- 
perimental evidence is available. 

A uniform shear flow is described by a con- 
stant gradient of mean velocity in a direction 
normal to the flow direction. No boundaries are 
present. Transient turbulence, which is spatially 
homogeneous, is initially established, for in- 
stance, by a wire screen, and the turbulence is 

Several features of stronger turbulence are 
present in weak turbulent shear flows, as shown 
in [5]. Transfer between eddies of different sizes 
is present, as is production of turbulence by the 
action of the mean velocity gradient. The decay 
of velocity and temperature fluctuations pro- 
ceeds, however, despite the production effects 
since they are not strong enough to offset 
dissipation effects. 

ANALYTICAL FORMULATION 

The thermal energy equations at two points P 
and P’ can be written, for constant properties, 
as 

and 

(1) 

(2) 

where fir and 7 are the instantaneous velocity 
components and temperature. Cartesian com- 
ponents of the position vector x are designated by 
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the subscript k, which takes on the values 1, 2, 
and 3. A repeated subscript on a term implies a 
summation of three terms corresponding to the 
three values of the subscript. Symbols t and a 
represent time and thermal diffusivity. A division 
of instantaneous quantities into steady and 
fluctuating components is accomplished by 
setting 

and 

T=T+7 (3) 

Sk = Uk + ak. (4) 

These relations are substituted into equation (I), 
and the resulting equation is averaged over a 
large number of systems that are macroscopically 
the same but have random fluctuating quantities 
that are spatially homogeneous in a statistical 
sense (ensemble average). The averaged equa- 
tions are subtracted from the unaveraged ones 
with the result 

a(Tuk) - 
;+Uk&+.,$k+,-z= 

k 

azT 
aaXkaXk) (5) 

where the overbar indicates an averaged 
quantity. The average of a fluctuating com- 
ponent is necessarily zero. At point P’, the 
equation corresponding to equation (5) can be 
visualized from equations (1) and (2). In a 
similar manner, the Navier-Stokes equations 
were treated in [5] to yield (at point P’) 

(6) 

An equation for 7 is obtained by multiplying 
equation (5) by u; and equation (6) by 7, adding, 
and averaging the resulting equation. In the 
interest of brevity, the turbulence is assumed 
weak at this point in the analysis so that the 
triple correlations that arise are neglected com- 
pared with the double correlations. None of the 
omitted triple correlations is different from that 
in [2]. The averaged equation is 

(7) 

where the independence of fluctuating quantities 
at one point from the position of the other point 
has been utilized in placing the quantities inside 
the spatial derivative signs. In homogeneous 
turbulence, (a/ax;.,, = a/ark and (a/axk)%kt = 

- a/ark if x’ = x + f. In the present case of a 
single steady velocity component VI and one 
velocity gradient dUi/dxz, a simplifying relation 
exists : 

which reduces equation (7) to 

a-, dul a -. 7 aT 
at ‘Uj + - r2 ar WI + 

dx2 1 
UkU - + 

’ aXk 

7 dU1 ia, 
TU2 611 -&g = - par, TP + 

(a + 4 azk, 
where 611 = 1 for j = 1 and 0 for j # 1. 

A similar procedure applied to the equations 
corresponding to equations (5) and (6) at P’ and 
P yields 

a dU1 
at 

2 + 2 &I__ i- U# 
dxz 

I aT I 
Ic aXk 

dUr a 1 a 
+~r2~i7=p~ipF+ 

+ (a + 4 gk9 (10) 

and, likewise, equation (5) at P and the corre- 
sponding equation at P’ yield 

a aT 

at 
77+$r2a+i7+G--(uT;;+7k)= 

2 1 - 
a2+ 

2a --. 
ark ark (11) 
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An additional equation is obtained by apply- 
ing a/ax; to equation (6) and noting the 
continuity equation &;/ax; = 0. This produces 

1 a2pt 
pax;;= 

(12) 

Multiplying equation (12) by T, averaging, and 
introducing rj = x; - x1 give 

1 azTpI 7 
dUi art+ 

--=-2dxzan. 
P arj ar, 

Similarly, 

1 a2p7' 2 dUr ai& --=-- 
P art an dxs arl * 

Fourier transforms are introduced : 

q(r) = ryf(x) exp [ix*r] d%, 
--co 

z(r) = 7 y;(x) exp [iK*r] dx, 
-m 

z(r) = 7 S(K) exp [ixsr] d%, 
-cc 

z(r) = re)tj(x) exp [ix-r] d%, 
-m 

- 
Tp’(r) =_TmS(x) exp ]iK*r] dz, 

F(r) = 7 l’(n) exp [ix-r] dx, 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
--cc 

where 1x1 = K is the wave number, which can be 
interpreted as the reciprocal of an eddy size. 

The Fourier transforms of equations (9) and 
(13) are 

ayj dU1 aYl aT dU1 --- 
at dx2 Kl& + '?'kfz, + '%2 dxz = 

- ;iK,5-(a+v)K2yr (21) 

and 

1 dul 
-_ 

P 
iKj[ = 2 y yz _, dx2 (22) 

where dU&Lxs and aT/aXk are constants. 
Equation (22) can be subtracted from equation 
(21) and 5 can thus be eliminated from the 

equations. A similar procedure applied to 
equations (10) and (14) yields an equation of the 
same form for r;. In the present study, the case 
of r = 0, aTlax # 0, and aTpx3 # 0 is con- 
sidered so that r; = y3. Symbols a = dUildx2, 
b = aT/ax2, and c = aTlax are introduced so 
that the final equations become 

aY2 aY2 -- 
at 

aK1 - = - bpz. - cp23 + 
aK2 

[2+ - (A + +K2] ys, (23) 

aY3 aY3 -_ 
at 

aKl-=-bbe)32-C~33+2a~r2- 
aK2 

1 R+ 
and 

as 
--CZKl~=-2by2--22cy2 at 

VK2Y3, (24) 

- 2aKs6, (25) 

where equation (25) is the Fourier transform of 
equation (11). 

SOLUTION OF SPECTRAL EQUATIONS 

Isotropic turbulence and zero temperature 
fluctuations are assumed as initial conditions. 
Expressions for ~2s and ~3s that satisfy these 
initial conditions have been reported in [S] and 
[7]. The latter is 

Q133 = 
JO{ Kf f [K2 + aKl(t - tO)12 + K$}” 

12?rz(K: + K;) 

1 x exp {-2V(t - to) [K2 

-!- 6 a2@ - tOI + aKlK2(t - to)]} 

X 
4 

K; + [KZ + aKl(t - tO)12 + K; 

K;K; 2K2K; 
+ 7 + (K; + ,i)1/2,2 tan-’ 

(K; ;” ,a$/2 - tan-1 
Ks + aKl(t - to) 
(Kf + Ks1'2 I 

4 
f (K; + K;) 

[ 
tan-l (K; +KsK:)u2 

- tan-l 
K2 + aKl(t - to) 
(Kf + K$)1/2 ' 

p (26) 



TURBULENT TEMPERATURE FLUCTUATIONS IN A UNIFORM SHEAR FLOW 471 

where JO and to are constants that depend on the 
initial conditions. 

In [7j, the solution for 972s = 9~32, although 
nonzero, was found to produce a zero value of 
G, which was consistent with the lack of a 
velocity gradient in the xz,xsplane. Equations 
(23) and (24) of this investigation have been 
solved for the effects of 9)23 by omission of the 
terms containing 9~22 and ~3s. (The linearity of 
the equations permits the addition of solutions.) 
Zero contributions to % and z are obtained 
from the direct effects of 972s; however, an in- 
direct effect that does contribute to ‘;;;3 enters 
equation (24) in the fifth term. This contribution 
can be traced to the expression of the pressure 
effect 5 in terms of ya in equation (22). The 
remaining portion of ya that contributes to 71(2 
is the same as that reported in [2]; it is not 
repeated herein. In the following solutions to 
equations (24) and (25) only those expressions 
that contribute to 7yi or ‘;i’ are shown. 

For Pr = 1, the Fourier transform of TG is 

y2 = Jot{ g + [K2 + a4 - toI + Jc: 12 
127T2CZK1(K; + Kg) 

x exp { -2~(t - to) LK2 

+ aKlK2(t - to) + g a2$(t - t0)2]} 

x - 
{ 

UK;(t - to) 

K; + [K2 + aKl(t - tO)12 + Kj 

K;K; 

+ (Kf + ,2$1/2,2 
[ 
tan-l (KF ;“,,1,2 

K2 + aKl(t - 
- tan-l - 

to) 

(K; + K31’2 
I 

i 

‘- CKfKTKi) 
c 

tan-1 (Kf ;“,,I,2 

- tan-l 
K2 + fW(t - to) 2 

(Kf -k K31’2 
I> 

’ 

>( 

For Pr # 1, ye takes the form 

ya = - 
k{ Kf + [K2 + aKl(t - to)12 + K; }2 

12T2aK(1(K,8 + /Ca 

exp [(l/pr) - lb2 

UK1 

K2 + 3 + K2 

l 3 9 

Wa) 

(27w 

- 2Y(f - to)[K2 + UKlK2(t - to) 

K, + ax, (I - t.) 

+ ia2Kf(t - tO)2] 

i s 
Kt 

exp 

X 1 Kf 
Kf + [K2 + UKl(t - tO)12 + K3” 

I 

+ ‘$ 
E 

- + (K; +1K3112 Kf + P + K; 

,(27b) 

- tan-l 
K2 + W(t - to) 

(Kf + K;)“’ )I 
x ;+ [ 1 

(K,” + K31’2 
( 

tan-1 (K; +;31,2 

- tan-l 
K2, + @l(t - to) 

(K; + ,2$1/2 
11) 

a. 

These expressions for ys and ys verify the 
fact that the turbulent heat-transfer com- 
ponents z and z arise from temperature 
gradient components in the respective directions 
aTlax and aTpx3. 

The transform of the portion of 7 that arises 
from aT/aJa is, for Pr = 1, 

S(2) -= 
JOC2{Kf + [K2 + UK& - ~IJ)]~ + K;}2 

12?r2a2K;(K: + Kg 

x exp { -2v(j - f0) [K2 + UKlK$ - to) 

+ f U2Kf(t - t~)~]} 

X 
U2Kf(t - to)2 

2 + [K2 + UKl(t - ?o)12 + K; 

+ & [tan-l (K; ;zK;y2 
- tan-l 

K2 + fW(j - to) 2 

(K,” + K31'2 I> ' 

The other portion S(Z) that is a result of aT/axa 
is the same as that reported in [2]. 
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The convenience of interpreting functions of A display of I’s and A(s) shows how the contri- 
K instead of functions of H was pointed out by 
Batchelor [S]. Following his suggestion, the 

butions to z and z are distributed among 
wave numbers or eddy sizes, since 

integrations that lead to z and TE are accom- 
plished in two steps, the first of which involves 
integrating over the angular coordinates of a 

G=T I’adKandF-- (3) - q 4s) dK. (31) 
fl 0 

wave-number sphere : 
COMPUTED SPECTRA 

f3(K) = i r y3(K, rp, 8)K” sin @ dg: d0 (29) Numerically calculated spectra of % and 
%I are displayed in dimensioniess form in 

and Figs. 1 and 2 for several values of the dimension- 
less velocity gradient a*. Since time enters all the 

?r Sri 

h(3)(K) = [ [ 8(3)(K, q?!, f+c2 Sin 8 dp, d0. 
C30j dimensionless representations, the curves for 

various a* show the effect of velocity gradient on 

(a) Prandtl number, 1. 

FIG. l(a). Dimensionless spectra of G and 71(2 for uniform transverse velocity and temperature gradients 
and for various Prandtl numbers. 
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FIG. I(b). Dimensioniess spectra of rz and tx for uniform transvexwz velocity and temperature gradients 
and for various Prandtl numbers. 

the spectra at any given time while the turbulence 
decays. Dashed curves correspond to those in 
[2] because of separability of solutions. For 
large Prandtl numbers, the spectra of 7; in 
Fig. 1 peak at large wave numbers (small eddy 
sizes). 

Isotropic spectra (a* = 0) in Fig. 1 are the 
same for ~z and z, as previously reported in 
[4J The behavior of the peaks of the spectra of 

z and ~z is similar to that of the respective 
production terms ~9~33 and by22 in equations (23) 
and (24); 922 decreases and shifts toward lower 
wave numbers as the velocity gradient increases, 
whereas 933 increases markedly with little shift 
(see Fig. 5 reference 5, and Fig. 2 reference 7). 

A shift to higher wave numbers in the spectra 
of 7 with increasing velocity gradient is evident 
in Fig. 2 both at the peak and at moderate values 
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(c) Prandtl number, 10. 

Fm. i(c). Dimensionless spectra of 7; and % for uniform transverse velocity and temperature gradients 
and for various Prandtl numbers. 

on the high wave number side; the shift results which becomes, for r = 0, 
in an elongation of the spectra toward high OD 
wave numbers. This spectral change is evidently as 
due to a transfer of activity from low wave 
numbers (large eddies) to high wave numbers 

s 
ICI- dx = 0. 

aK2 (33) 
-cc 

(small eddies) by the action of the second term 
in equation (25), which is known as the transfer Similar results can be obtained from correspond- 

term. The name stems from the Fourier trans- ing terms in equations (23) and (24). Thus, these 

form relation terms contribute nothing to &i&U, l&&t, 

co and @/at, but they do alter spectral distri- 

a77 as butions. 
r2%=- J KI z2 exp [ix. r] dx, (32) The integration shown in equation (33) can be 

--00’ accomplished in two steps by first integrating 
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0.025 --- A ;*I ~&!+2pIo62, from ref. 2 

0 0.4 0.8 l-2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 
K* y/q- top2. 

FIG. 2. Dimensionless spectra of G and 75 for uniform transverse velocity and temperature gradients. 
Prandtl number, 1. 

0,004 r 0’ =(f-fo) dq/dx2 

-0,008 ‘ I I I 0 0.4 0.8 l-2 1 
2.4 2-8 3.2 3.6 4.0 

FIG. 3. Dimensionless spectra of transfer terms in spectral eq&tions for 5 and x. Prandtl number, 1. 
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over the angular coordinates of a wave-number 
sphere and then integrating over the wave 
numbers. Of course, the second step yields a 
trivial result, but the first result is a spectral 
transfer function. For Pr =:- 1, the integrated 
transfer term corresponding to 3 is shown in 
Fig. 3. Most of the transfer of activity is out of 
the low-wave-number spectrum and into the 
high-wave-number spectrum, but some reverse 
transfer occurs at low wave numbers and low 
velocity gradients. Deissler [2] attributed this 
activity transfer to a vortex-stretching process, 
which might also involve vortex compression at 
low velocity gradients and thereby produce some 
reverse transfer. 

PRODUCTION, TEMPERATURE FLUCTUATION, 
AND CONDUCTION SPECTRA 

Production of temperature fluctuations by the 
third and fourth terms in equation (25) is 
interpreted as a result of the action of the 
temperature gradient on the respective turbulent 
heat transfer, 7112 and z. Conduction or dissi- 

,K.Production 
,FIuctuation 

,’ ‘-., 

pation in the last term reduces local temperature 
peaks by molecular heat conduction away from 
hot spots. Production and conduction terms can 
be integrated over a wave-number sphere to 
yield spectral distributions in the same manner 
as that used to obtain the temperature fluctuation 
spectra of 7 in Fig. 2. After normalization of 
the peak values to unity, all three spectra are 
shown in Fig. 4 for Pr = 1 and a high velocity 
gradient (a* = 50). Actually, two sets of spectra 
corresponding to the separate effects of i’T/axs 
and ~T/~xz (from [2]) are displayed in Fig. 4. For 
low velocity gradients, the three spectra are close 
together, like those in Fig. 4 of [2]. For a large 
velocity gradient, production, fluctuation, and 
conduction spectra in the present Fig. 4 peak at 
successively greater wave numbers. 

All these effects take place as the turbulence 
and the turbulent temperature fluctuations decay. 
Fluctuations are produced in the large eddies 
(low wave numbers), transferred to the small 
eddies (high wave numbers), and finally dissi- 
pated by molecular conduction. 

.E Dissipation 

- -_ 
n 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 

I 

K .yq I- top, 
FIG. 4. Comparison of production, temperature fluctuation, and conduction spectra from spectral equations for x 
and F) (solid and dashed curves, respectively) at large velocity gradient. Prandtl number, 1. a* = (t - to) dUl/dxz = 

50. (Curves normalized to same height.) 
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TEMPERATURE-VELOCITY CORRELATION 
COEFFICIENT 

Corrsin [3] introduced a temperature-velocity 
correlation coefficient that is modified herein to 
account for the separate effects of ST/i:xz and 
aT/axs. Two dimensionless coefficients are 
utilized, 

- - 
7u2 7u3 

the former being the same as that presented in 
[2]. The latter coefficient has been calculated 
from integrals of the curves in Figs. 1 and 2 and 
those in Fig. 2 [7], all for Pr = 1. Fig. 5 is a 
display of both correlations as a function of 
velocity gradient, starting with the perfect 
correlation value of -1 that was obtained in [4] 
for isotropic turbulence (a* == 0). In the range 
0 5 a* 5 50, one correlation coefficient 

TU3 

(5, ip 
achieves an asymptotic value of -0.9 whereas the 
other, by decreasing monotonically, shows a con- 
tinuous loss of correlation between the temper- 
ature and velocity fluctuations as a* increases. 

That the correlation coefficients in. Fig. 5 are 
independent of the temperature gradients is 
noteworthy. This independence is lacking in the 
conventional coefficients that utilize 

7(- 5) + 7%) 

in place of 3) or 5) in the present formulation. 
In fact, the conventional coefficients are 
functions of both the velocity gradient a* and 
the unrelated temperature gradient; for example, 

- 
7u3 

v 
(‘2 .$)1/Z 

is a function of a* and aT/axs, as is evident from 
the solutions of the spectral equations. These 
misleading functional relationships are absent 
from the present correlation coefficients, which 
are functions-of a* alone. 

The dimensionless forms of 6 and 5 are 
displayed in Fig. 6. 

EDDY DIFFUSIVITIES 

The eddy diffusivities of momentum and heat 
(in the x2- and xs-directions) are defined by 

-. - 
UlU2 7u2 

<= -----, 

dUl/dxz %(s) = - ~T,~x2Y 

- 
7u3 

‘h(3) = - wax3 (34) 

Ratios of eddy diffusivities play a large part in 
phenomenological theories of steady turbulent 
flows. A unity value of E~(z)/E produces the best 
agreement between experiment and analysis for 
Prandtl numbers that are not too low [l]. In the 
transient turbulence analysis of [2], Deissler 
obtained a similar tendency of E~(z)/E toward 
unity at high values of a* which were found to 
correspond roughly to steady turbulent flows. 
Recent phenomenological analysis [9], [lo] of 
circumferential variations of heat transfer in 
round tubes are based on an assumption of 
equal eddy diffusivities in the radial and circum- 
ferential directions; that is, ~(2) == <h(s) in the 
present notation. 

A dimensionless eddy diffusivity 

G’s@ - @~a Eh(3)/JO 

can be obtained by integrating the curves in 
Fig. 1. Integration of the curves in [5] for E is 
also necessary for the calculation of E&E, 
which is displayed in Fig. 7 along with th($)/E 
from [2]. Although the curves for the two 
ratios are not widely separated at low velocity 
gradients, which are near the isotropic case 
(a* = 0), large velocity gradients produce values 
of Q&E that are two orders of magnitude 
greater than values of EI~(B)/E, except for low 
Prandtl numbers. 

The relative magnitudes of c&(s) and oh can 
be compared with the magnitudes of the 
turbulent velocity fluctuations (or turbulent 
energy components) in the two directions 2 and 
z References 5 and 7 show that z proceeds 
rapidly but asymptotically toward zero at large 
velocity gradients, whereas q decreases slowly 
from the average of the energy components 
E/3, which increases with velocity gradient. 
Likewise from physical reasoning, it is clear that 
the thermal eddy diffusivity is greater in the 
direction of greater velocity fluctuations. 

The existence of greater z than ‘2 has long 
been suspected [ll] and, in recent times, has 
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FIG. 5. Temperature-velocity correlation coefficients as a function of dimensionless velocity gradient. Prandtl number, 1. 

--___ &i: %,5/*( ,- ,O1lQ/~ocJ 
from ref. 2 

FIG. 6. Dimensionless G and T as a function of dimensionless velocity gradient. Prandtl number, 1. 
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FIG. 7. Ratio of eddy diffusi~ty for heat transfer to that for momentum transfer as a function of dimensionless 
velocity gradient. 

been verified experimentally in tube and channel 
flow [12], [I31 and in boundary layers [14]. In 
fact, the ordering of all three components of 
t~bulent energy (from largest to smallest) is the 
same (3, ~2, 2) in those measurements and in 
the present theory [7] at large velocity gradients. 
Apparently, not all features of boundary layers 
and tube flow are dependent on the presence of 
boundaries, which are absent in the theory. 

Deissler [2] compared the transient analysis 
with a steady flow in a boundary layer or tube by 
taking ~~~~~~~~~ N 1 from turbulent energy 
spectral curves and 0.36 as a representative 

length, where 8 is the boundary-layer thickness 
or the tube radius. If U is an average velocity and 
dUr/dxa N U/S, then a* is of the order of 
O-1 U~/~. This implies that Q(~)/E is larger 
than ~&)1(2)/r for Reynolds numbers of 104 and 
over that are encountered in practice. 

The results of the present analysis, together 
with existing velocity-fluctuation measurements, 
provide no support for an assumption of equal 
thermal eddy diffusivities in the radial and cir- 
cumferential directions (Q(Z) =. q(3)) in turbulent 
tube flow. Instead, the relation ~(3) > ~(2) 
is indicated. 
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R&am&--Des equations de correlation pour des fluctuations statistiquement homogenes de vitesse 
et de temperature en deux points dans un ecoulement infini de cisaillement uniforme sont obtenues 
en tenant compte dun gradient de temperature dam une direction arbitraire dans un plan normal a 
la direction de l’ecoulement. La turbulence isotrope excitee initialement decrolt et devie,rt anisotrope 
avec le temps. Apres avoir introduit des transformations de Fourier, les equations spectrales rbult- 
antes sont resolues dans le cas dune turbulence faible dam lequel les correlations triples sont negligees 
par rapport aux correlations doubles. Les spectres du transport de chaleur turbulent et de la fluctuation 
de temperature sont calculcs. Pour de grands gradients de vitesse sans dimensions, la diffusivite 
thermique turbulente dans la direction normale au gradient de vitesse est beaucoup plus grande que 
celle dans la direction du gradient de vitesse. La diffusivite thermique turbulente dam la direction du 
gradient de vitesse tend a devenir tgale a la diffusivite de quantitt de mouvement turbulente a des 

gradients tleves de vitesse. 

Zusammenfassung-Unter Reriicksichtigung eines Temperaturgradienten von beliebiger Richtung in 
einer Ebene senkrecht zur Strbmungsrichtung werden an zwei Stellen in einer unendlichen, gleich- 
formigen Scherstromung Korrelationsgleichungen fur stat&h homogene Geschwindigkeits- und 
Temperaturschwankungen abgeleitet. Die urspriinglich angeregte isotrope Turbulenz klingt ab und 
wird mit der Zeit anisotrop. Nach Einfiihrung von Fourier-Transformationen werden die sich erge- 
benden Spektralgleichungen fiir den Fall schwacher Turbulenz gel&t, worin Dreifachkorrelationen 
im Vergleich zu Zweifachkorrelationen vernachliissigt werden. Spektra des WLrmeiibergangs und der 
Temperaturschwankungen bei Turbulenz werden berechnet. Fur grosse dimensionslose Geschwindig- 
keitsgradienten wird der turbulente Warmeaustausch normal zum Geschwindigkeitsgradienten vie1 
grosser als in Richtung des Geschwindigkeitsgradienten. Der turbulente Warmeaustausch in Richtung 
des Geschwindigkeitsgradienten gleicht sich dem Impulsaustausch bei Turbulenz und bei grossen 

Geschwindigkeitsgradienten an. 

Amnrraniin-B CTaTbe BbIBOnflTCR KOppennuuOHHhte ypaBHeHI4n AJIII CTaTKCTAYeCKIi rOMOrCH- 
HbIx IIyJIbCauIIi CKOpOCTA II TeMIIepaTypbI B nByX TO’IKaX HeOrpaHIFIeHHOrO paBHOMepHOr0 
IIOTOKa CO CRBIIrOBbIMll HaIIpnIKeHIInMK B ~OIIymeHKK TeMIICpElTypHOrO rpaAIIeHTa B IIpO- 
K3BOJIbHOM HaIIpaBJIeHMII B IIJIOCKOCTH, IIepIIeH~IIKyJIRpHOt HaIIpaBJIeIIIIIO Te’IeHHII. RbI3BaK- 
Iian BHaqaJIe II30TpOIIHaJI Typ6yJIeHTHOCTb BbIpOmAaeTCR II CO BpeMeHeM CTaHOBuTCfI aHK30- 
T~OIIHO~. DOCnt? BBer&!HIIn npeo6paaoaaaKt Qypbe IIOJIy4CHHbIe CIICKTpanbHbIe ypaBHeHKK 
pemeKbI gnn cnysan cna6ott Typ6yJIeHTHOCTII, me TpOfiHbIe KOppeJIfIIIIIII IIpeHe6peraIOTCFI 
no CpaBHeHMIo c ABOtiHbIMH KOppeJIFInKnMII. PaCC%ITaHbI CIIeKTpbI Typ6yJIeHTHbIX IIyJIbCaI@ 
Tennoo6MeKa II TeMnepaTypbI. Ilpa 6orIbnmx 6eapasMepKnx rpanKeKTax CKOPOCTM BenmIKKa 
Typ6yJIeHTHOfi TeMIIepaTypOIIpOBOAHOCTn B HaIIpaBJIeHKII, IIepIIeHAIIKyJIXpHOM rpagKeHTy 
CKOpOCTII, HaMHOrO 6onbme, ‘IeM B HaIIpaBJIeHIIH rpaAIIeHTa CKOpOCTII. Typ6yneuTBan 
TeMnepaTypOnpOBOAHOCTb B HanPaBfieHKu rpaAIIeHTa CKOpOCTII CTpeMKTCn CpaBHRTbCR C 

KO3~~HnBeHTOM Typ6yJIeHTHOti BnBKOCTII IIpII 6onbmIIx I’panIIeHTaX CKOpOCTK. 


