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Abstract—Correlation equations for statistically homogeneous fluctuations of velocity and temperature
at two points in an infinite uniform shear flow are derived with allowance for a temperature gradient
in an arbitrary direction in a plane normal to the flow direction. The initially excited isotropic
turbulence decays and becomes anisotropic with time. After Fourier transformations are introduced, the
resulting spectral equations are solved for the case of weak turbulence wherein triple correlations
are neglected compared with double correlations. Spectra of turbulent heat transfer and temperature
fluctuation are calculated. For large nondimensional velocity gradients, the thermal eddy diffusivity in
the direction normal to the velocity gradient is larger than that in the direction of the velocity
gradient. The thermal eddy diffusivity in the velocity-gradient direction tends to equal the momentum
eddy diffusivity at large velocity gradients.
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NOMENCLATURE
transverse velocity gradient, dUy/dxs;

dimensionless transverse velocity
gradient, (¢ — #¢) dUy/dxs3;
transverse temperature gradient,
T [0x;

transverse temperature gradient,
0T [0xg;

constant that depends on initial
conditions;

arbitrary points;

Prandt! number, v/a;

instantaneous pressure;

distance from P to P’;

distance vector from P to P’;
component of r;

average temperature;

instantaneous temperature,

transfer term for temperature fluctua-
tions obtained by integrating
x188/0xg in equation (25) over the
angular co ordinates of a wave
number sphere;

time;

initial value of ¢;

an average velocity component;
instantaneous velocity component;
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Uk,

Xk,
a’
Tz, T,
Y1

’
Yo

€hy

fluctuating part of velocity com-
ponent defined by equation (4);
space coordinate;

thermal diffusivity;

spectrum functions of 7wz or Tus
defined by equation (29);

Fourier transform of 7u; defined by
equation (15);

Fourier transform of w defined by
equation (16);

spectrum function of 72 defined by
equation (30);

Fourier transform of 7+ defined by
equation (17);

equals 1 for i = j and equals 0 for
i#J;

eddy diffusivity for momentum trans-
fer defined by equation (34);

eddy diffusivity for heat transfer
defined by equation (34);

Fourier transform of 7p’ defined by
equation (19);

Fourier transform of p+ defined by
equation (20);
spherical  coordinate
number space;

in  wave-
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K, wave number;
K*, dimensionless wave number,
VI2(F — ()2 i
i, wave number vector;
K7, component of wave number vector;
v, kinematic viscosity;
£, dummy variable;
£, density;

, fluctuating part of temperature de-
fined by equation (3);

v, spherical  coordinate  in

number space;

wave

®ijs Fourier transform of wu; defined by
equation (18).
Subscripts
i, j, k, values equaling 1, 2, or 3 and desig-
nating coordinate directions;
(2), (3), scalar quantities that arise from the
effects of 0T/oxz or T /oxs.
Superscripts
s point P’;
—_ average value;
*, dimensionless quantity.
INTRODUCTION

PHENOMENOLOGICAL theories of turbulence, which
are reviewed in [1], have recently reccived support
from statistical turbulence theory. In a uniform
shear flow with decaying turbulence, Deissler [2]
found a tendency of the ratio of «ddy diffusivi-
ties for heat and momentum to approach unity
for conditions that correspond roughly to
steady channel flow. Developments of this nature
do not form a basis for supplanting phenomeno-
logical theories, which are the only practical
means of organizing quantities of experimental
evidence. Rather, statistical theories further the
understanding of turbulence and may, in some
instances, point the way for new extensions of
the phenomenological theories when no ex-
perimental evidence is available.

A uniform shear flow is described by a con-
stant gradient of mean velocity in a direction
normal to the flow direction. No boundaries are
present. Transient turbulence, which is spatially
homogeneous, is initially established, for in-
stance, by a wire screen, and the turbulence is
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later studied when it is weak enough for the
triple correlations of velocity or temperature
fluctuations to be neglected.

Early statistical investigations of turbulent
heat transfer were concerned with the isotropic
turbulence that arises in the absence of a mean
velocity gradient [3, 4]. For shear flows, numeri-
cal values of the velocity correlations were first
presented by Deissler [5]. Additional studies of
heat transfer, pressure fluctuations and velocity
correlations were accomplished by him [2, 6]
and Fox [7]. In the present effort, these studies
are extended to include the effects of a tempera-
ture gradient with components not only in the
direction of the velocity gradient (the subject of
[2D) but also in the direction normal to both the
velocity vector and the velocity gradient. A
similar arrangement of vectors occurs in a tube
flow with circumferential variations in heat
transfer. In the following development, tempera-
ture gradient effects are shown to be separable
into components; consequently, the results of
the present investigation supplement those of
[21.

Several features of stronger turbulence are
present in weak turbulent shear flows, as shown
in [5]. Transfer between eddies of different sizes
is present, as is production of turbulence by the
action of the mean velocity gradient. The decay
of velocity and temperature fluctuations pro-
ceeds, however, despite the production effects
since they are not strong enough to offset
dissipation effects.

ANALYTICAL FORMULATION
The thermal energy equations at two points P
and P’ can be written, for constant properties,
as

eT &) T @
F I_ ‘-CK]T CXE CXk
and
T T 2T
DD T o
at Xy ex; OXy,

where iy and T are the instantaneous velocity
components and temperature. Cartesian com-
ponents of the position vector x are designated by
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the subscript &, which takes on the values 1, 2,
and 3. A repeated subscript on a term implies a
summation of three terms corresponding to the
three values of the subscript. Symbols ¢ and «
represent time and thermal diffusivity. A division
of instantaneous quantities into steady and
fluctuating components is accomplished by
setting

T=T+r 3)
and
= Ug 4+ u. 4

These relations are substituted into equation (1),
and the resulting equation is averaged over a
large number of systems that are macroscopically
the same but have random fluctuating quantities
that are spatially homogeneous in a statistical
sense (ensemble average). The averaged equa-
tions are subtracted from the unaveraged ones
with the result

or or 3(7’141;) drur
?t—*- U +ukaxk+ Oxx oxp
o2r
‘T O
where the overbar indicates an averaged

quantity. The average of a fluctuating com-
ponent is necessarily zero. At point P’, the
equation corresponding to equation (5) can be
visualized from equations (1) and (2). In a
similar manner, the Navier-Stokes equations
were treated in [5] to yield (at point P’)

ou, 8U v au
5;:’ —1 + (ujulc)
1 op’ o u,
awm;7@+%mﬁ ©

An equation for 7u; is obtained by multiplying
equation (5) by u; and equation (6) by 7, adding,
and averaging the resulting equation. In the
interest of brevity, the turbulence is assumed
weak at this point in the analysis so that the
triple correlations that arise are neglected com-
pared with the double correlations. None of the
omitted triple correlations is different from that
in [2]. The averaged equation is

HMB8 G
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bru; U oru, — 8T — 0U,
o T ¥ i +ukuj(,7~+7uk—a;;+
,omu; 1o’ oru,
k ox, pox; " ax,ox,
az'ru
axk axk ™

where the independence of fluctuating quantities
at one point from the position of the other point
has been utilized in placing the quantities inside
the spacial derivative signs. In homogeneous
turbulence, (8/0x;)z, = 0/orx and (8/0xk)z, =
— 0/org if X’ = x + r. In the present case of a
single steady velocity component U; and one
velocity gradient dUi/dxs, a simplifying relation
exists:

Uy~ Un g = 2, ®
which reduces equation (7) to
00— dlU 0 — —oT
é—truj—l—mrga—rlruj—f—ukuja—x—k—}—

—_  ds 10 —

TU, 1137:—“;5‘} P+

2Ty,
@+ ory a:]g’ ®)

where 81; = 1 for j =1 and O for j # 1.

A similar procedure applied to the equations
corresponding to equations (5) and (6) at P’ and
P yields

— T

0 — d
priliiie Ust’ 8“d L ity 5 +
Uy 0 — 1o —
T e T T arip o
T
+@+v) 55— e ors’ (10

and, likewise, equation (5) at P and the corre-
sponding equation at P’ yield

a_ L
+ dx r TT + a—x—,'c(uk‘r + ’Tuk)——
i
a '—“_ark ar;. (11)
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An additional equation is obtained by apply-
ing 6/3xj to equation (6) and noting the
continuity equation 8uj /8x, = 0. This produces

1 2%’ ou, oU,  (uuy) 32ujuk
p ox,0x, ox; 0x, 0x,0x, 0x,0%,
(12)

Multiplying equatlon (12) by T, averaging, and
introducing ry = xj — Xxj give

1 &2zp’ dU, oru,

F 8r, 3"7' - dxs 3"—1 (13)
Similarly,
1 22pr dty dugr’
porior;  “dxz or - (14)
Fourier transforms are introduced:

() = [ yi0) exp [ix-rl dx,  (15)
u'(r) = | vj) exp [in-r] dx,  (16)
;"(r) =°j' 8(3¢) exp [ix-r] dx, a7n
ugu, (r) = f«pu(x) exp [ix-r| dx, (18)
.1;(1') = f {(s¢) exp [ix-r] dx, (19)
pr® =T Lo experldx,  (20)

where |x| = « is the wave number, which can be
interpreted as the reciprocal of an eddy size.

The Fourier transforms of equations (9) and
(13) are

dys oT 4
U A Ty T P Gy, T OUTE G, T

1
— il =@+l QD
and |
1. ., KiKj dth
— ; lKlg = 7 Y2 a—xg, (22)

where dU;/dxs and oT/éxy are constants.
Equation (22) can be subtracted from equation
(21) and { can thus be eliminated from the
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equations. A similar procedure applied to
equations (10) and (14) yields an equation of the
same form for y,. In the present study, the case
of r =0, &T/oxs # 0, and 0T/oxs # 0 is con-
sidered so that y, = y;. Symbols a = dUi/dxs,
b = 8T/ox2, and ¢ = 0T /0xs are introduced so
that the final equations become

dy2 %%
T gL = — bpza — cqes +
K1K2 1
[20 —KT — (FI: + I)VKz] Y2, (23)
dys Oys

K13
PR P bpsz — cpas + 2a —5-y2 -

1
(Fr + l)wczya, 24)

and
08 a8
5 — 9 Friai 2bys — 2cys — 20x28, (25)

where equation (25) is the Fourier transform of
equation (11).

SOLUTION OF SPECTRAL EQUATIONS
Isotropic turbulence and zero temperature
fluctuations are assumed as initial conditions.
Expressions for g2z and @a3 that satisfy these
initial conditions have been reported in [5] and
[71. The latter is

Jo{r? + [ke + axa(t — t)P2 + «212)
121r2(Kf + Kg)

X exp {—2v(t — to) [x®
+ } a?x3(t — 10)* + arixa(t — to)l}

@33 =

i
x {Kz + k2 + ara(t — to) + Kg
-

2
+3+ + (26)

2kax] tan-1
GRS
K ke + arxi(t — ¢
2 T : iz — tant : 2 1(2120)
(3 + D12 (<} + DV
2
K.

3
T e

an~—
x2) (k2 4 k212

kg + ar1(t — to)]?

— tan—1

J
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where Jg and #, are constants that depend on the
initial conditions.

In [7], the solution for ga3 = @32, although
nonzero, was found to produce a zero value of
ugus, which was consistent with the lack of a
velocity gradient in the xz,xs-plane. Equations
(23) and (24) of this investigation have been
solved for the effects of g3 by omission of the
terms containing a2 and gs3. (The linearity of
the equations permits the addition of solutions.)
Zero contributions to 7uz and Tus are obtained
from the direct effects of ga3; however, an in-
direct effect that does contribute to 7ug enters
equation (24) in the fifth term. This contribution
can be traced to the expression of the pressure
effect { in terms of y2 in equation (22). The
remaining portion of y» that contributes to us
is the same as that reported in [2]; it is not
repeated herein. In the following solutions to
equations (24) and (25), only those expressions
that contribute to Tuz or 72 are shown.

For Pr = 1, the Fourier transform of rug is

_ Joc{k} + [re + ara(t — t)P + <3}
7= 12n2ar1(x + «2)

X exp { —2v(t — fo) [«2

+ ariea(t — to) + § a?3(t — 10)?]}

-~

v {_~ axd(t — to)
k2 A [xa + a1t — to)]2 + 34
K22 Ko L(27a)
+ G e [

_ tan-1" + ari(t — to)]

(xF + «3) [tan CENL
Lk aalt — )2
T |
For Pr # 1, ys takes the form
_ Joc{x} + [xz 4 axi(t—~ )P + <312
121r2aK1(xf + «?)

exp {[(I/Pr) b

axky

-4

— tan

J

73 =

K3
("g t3t "g) @)
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— 2u(t — to)[x® + axixa(t — to)

Ky + ax (t — to)

+w«~wﬂ

Ky

aky

K§
X {Kg Flrz + arat — f)F + <2
¢ 1
+@L@+8+@+uﬂwwm
¢
(tan-l ml—m
kg + axi{t — to))]

I+ e

r(27b)

— tan-1
Kg Ke

X |5 + 5 (tanl ——=
[ e (o g

— tan1 2 + aalt — to))]} d¢.

CE Rl

<

These expressions for yz and ys verify the
fact that the turbulent heat-transfer com-

ponents Tuz and 7wz arise from temperature
gradient components in the respective directions
0T /0xz and 8T/0x3.

The transform of the portion of 72 that arises
from 0T/ox3 is, for Pr = 1,

_ Joc2{k} 4 [x2 + ar1(t — to)]2 + x2}2)
N [2n2B(eE + x2)
X exp { —2u(t — to) [x% + axixa(t — to)
+ 3 a22(t — 1)}

@t — to)?

x { - (28)
«? 4 [x2 + axi(t — o) + K2

w22 Ko
T [tan‘l (& R
K]+ K3 (3 + «3)
kg + a1t — to)]2
NP .

+

— tan—1

J

The other portion 8 that is a result of 8T/dxa
is the same as that reported in [2].
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The convenience of interpreting functions of
« instead of functions of ¥ was pointed out by
Batchelor [8]. Following his suggestion, the
integrations that lead to 73, and TU3 are accom-
plished in two steps, the first of which involves
integrating over the angular coordinates of a
wave-number sphere:

T 2m
Fa(r) = [ [ ya(x, @, O sin 8 dg df  (29)

0

O
and

27

Aay(x) = T { Sk, ¢, B2 sin 8 dg df. (30)
i)
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A display of I's and A shows how the contri-
butions to tusz and %, are distributed among
wave numbers or eddy sizes, since

Tu3 zj; I's dc and 73, = fOA(s) de.  (31)

COMPUTED SPECTRA
Numerically calculated spectra of 7ugz and
;3-3) are displayed in dimensionless form in
Figs. 1 and 2 for several values of the dimension-
less velocity gradient a*. Since time enters all the
dimensionless representations, the curves for
various a* show the effect of velocity gradient on

T3 2t 19T500

— = Tyt tlyh)

from ref. 2

P

2 p 12,

{a) Prandti number, 1.

. 1(a). Dimensionless spectra of 7wz and 7sz for uniform transverse velocity and temperature gradients

and for various Prandtl numbers.
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-0028—

a* == 1) dthldn

T3 =var-1)Ty1p
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x* =v1‘l2{f°‘ fg)uzx
{b} Prandtl number, 0-01.

Fig. 1(b). Dimensionless spectra of 7wz and »uz for uniform transverse velocity and temperature gradients
and for various Prandtl numbers.

the spectra at any given time while the turbulence
decays. Dashed curves correspond to those in
[2] because of separability of solutions. For
large Prandtl numbers, the spectra of 7us in
Fig. 1 peak at large wave numbers (small eddy
sizes).

Isotropic spectra (a* = 0) in Fig. 1 are the
same for 7us and 7uz, as previously reported in
[4]. The behavior of the peaks of the spectra of

Tus and 7up is similar to that of the respective
production terms ce3s and bgas in equations (23)
and (24); @22 decreases and shifts toward lower
wave numbers as the velocity gradient increases,
whereas a3 increases markedly with little shift
(see Fig. 5 reference 5, and Fig. 2 reference 7).
A shift to higher wave numbers in the spectra
of 72 with increasing velocity gradient is evident
in Fig. 2 both at the peak and at moderate values
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(c) Prandt) number, 10.

Fie. 1(c). Dimensionless spectra of 7us and twz for uniform transverse velocity and temperature gradients
and for various Prandtl numbers.

on the high wave number side; the shift results
in an elongation of the spectra toward high
wave numbers. This spectral change is evidently
due to a transfer of activity from low wave
numbers (large eddies) to high wave numbers
(small eddies) by the action of the second term
in equation (25), which is known as the transfer
term. The name stems from the Fourier trans-
form relation

orr

rg — = —

o 32)

le Epe exp [ix.r] dx,

ge— 8

which becomes, for r = 0,

T o
1 g d = 0. (33)

-— o

Similar results can be obtained from correspond-
ing terms in equations (23) and (24). Thus, these
terms contribute nothing to drus/dr, drusjot,
and @72/or, but they do alter spectral distri-

butions.
The integration shown in equation (33) can be
accomplished in two steps by first integrating
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0035 a* =(1-15) dyldxy

0-030|—

A {3y v 23D

——— A I(Jobz) from ref. 2
005 (2) (2

0-020—

(2

orA’

3

< 0015

0-0101—

0-0051—

1-6 2.0 . . . . 40
K V- 1) V2
Fic. 2. Dimensionless spectra of 723 and 727, for uniform transverse velocity and temperature gradients.
Prandtl number, 1.

0

0-004—
a* = (1-14) di4ldr,y

-0-004 .
\\ // —_— 7" (3 'VZ;-B)/(JOCZ)
\ — — — Tl v e trom ref. 2
~0-006 — \/
-0-008 | | I | l I | l I |
0 0-4 0-8 1-2 1:6 2:0 2-4 28 32 36 40

AW T ’o)llzx
Fic. 3. Dimensionless spectra of transfer terms in spectral equations for 3, and 79, Prandtl number, 1.
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over the angular coordinates of a wave-number
sphere and then integrating over the wave
numbers. Of course, the second step yields a
trivial result, but the first result is a spectral
transfer function. For Pr == 1, the integrated
transfer term corresponding to 72 is shown in
Fig. 3. Most of the transfer of activity is out of
the low-wave-number spectrum and into the
high-wave-number spectrum, but some reverse
transfer occurs at low wave numbers and low
velocity gradients. Deissler [2] attributed this
activity transfer to a vortex-stretching process,
which might also involve vortex compression at
low velocity gradients and thereby produce some
reverse transfer.

PRODUCTION, TEMPERATURE FLUCTUATION,
AND CONDUCTION SPECTRA
Production of temperature fluctuations by the
third and fourth terms in equation (25) is
interpreted as a result of the action of the
temperature gradient on the respective turbulent
heat transfer, 7uz and rus. Conduction or dissi-

. ~Fluctuation
/K\PFOdUCtIOﬂ R
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1-0
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. 5

g 0-4

02

l ~
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pation in the last term reduces local temperature
peaks by molecular heat conduction away from
hot spots. Production and conduction terms can
be integrated over a wave-number sphere to
yield spectral distributions in the same manner
as that used to obtain the temperature fluctuation
spectra of 7 in Fig. 2. After normalization of
the peak values to unity, all three spectra are
shown in Fig. 4 for Pr = 1 and a high velocity
gradient (a* = 50). Actually, two sets of spectra
corresponding to the separate effects of ¢7/ox3
and oT/éxs (from [2]) are displayed in Fig. 4. For
low velocity gradients, the three spectra are close
together, like those in Fig. 4 of [2]. For a large
velocity gradient, production, fluctuation, and
conduction spectra in the present Fig. 4 peak at
successively greater wave numbers.

All these effects take place as the turbulence
and the turbulent temperature fluctuations decay.
Fluctuations are produced in the large eddies
(low wave numbers), transferred to the small
eddies (high wave numbers), and finally dissi-
pated by molecular conduction.

/4|- Dissipation
|

e

~ o
B e PR B

1.2 1-6

2.0 24 2-8 36

32

4-0

K e V2o 12,

FIG. 4. Comparison of production, temperature fluctuation, and conduction spectra from spectral equations for 7%,
and 7%z, (solid and dashed curves, respectively) at large velocity gradient. Prandti number, 1. a* = (t — fo) dU1/dx2 =
50. (Curves normalized to same height.)
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TEMPERATURE-VELOCITY CORRELATION
COEFFICIENT
Corrsin [3] introduced a temperature-velocity
correlation coefficient that is modified herein to
account for the separate effects of &7/éx2 and
oT/oxs. Two dimensionless coefficients are
utilized,

iz U3
(% l','g)l/z (7'.(72;') u_g)m’

the former being the same as that presented in
[2]. The latter coefficient has been calculated
from integrals of the curves in Figs. 1 and 2 and
those in Fig. 2 [7], all for Pr = 1. Fig. 5is a
display of both correlations as a function of
velocity gradient, starting with the perfect
correlation value of —1 that was obtained in [4]
for isotropic turbulence (a* == 0). In the range
0 < a* £ 50, one correlation coefficient

TUS

achieves an asymptotic value of —0-9 whereas the
other, by decreasing monotonically, shows a con-
tinuous loss of correlation between the temper-
ature and velocity fluctuations as a* increases.

That the correlation coefficients in Fig. 5 are
independent of the temperature gradients is
noteworthy. This independence is lacking in the
conventional coeflicients that utilize

B -2 5

(= 1y T &)
in place of 7%, or 72, in the present formulation.
In fact, the conventional coefficients are

functions of both the velocity gradient a* and
the unrelated temperature gradient; for example,

TU3
(:2 u_g)uz
is a function of ¢* and 0T/dx2, as is evident from
the solutions of the spectral equations. These
misleading functional relationships are absent
from the present correlation coefficients, which
are functions-of a* alone.
The dimensionless forms of 73, and <7, are
displayed in Fig. 6.

EDDY DIFFUSIVITIES
The eddy diffusivities of momentum and heat
(in the x2- and xs-directions) are defined by

. Uius o TUY
€= aUl/dXZ’ @) = oT|oxe’
Tu
RO = T FTToxa (34)

Ratios of eddy diffusivities play a large part in
phenomenological theories of steady turbulent
flows. A unity value of €x(2)/ € produces the best
agreement between experiment and analysis for
Prandtl numbers that are not too low [1]. In the
transient turbulence analysis of [2], Deissler
obtained a similar tendency of en)/e toward
unity at high values of a* which were found to
correspond roughly to steady turbulent flows.
Recent phenomenological analysis [9], [10] of
circumferential variations of heat transfer in
round tubes are based on an assumption of
equal eddy diffusivities in the radial and circum-
ferential directions; that is, en(2) == ex(3) in the
present notation.
A dimensionless eddy diffusivity

V5/2(l — 10)3/2 €h(3)/J0

can be obtained by integrating the curves in
Fig. 1. Integration of the curves in [5] for « is
also necessary for the calculation of en3)/e,
which is displayed in Fig. 7 along with en(9)/e
from [2]. Although the curves for the two
ratios are not widely separated at low velocity
gradients, which are near the isotropic case
(a* = 0), large velocity gradients produce values
of en)/e that are two orders of magnitude
greater than values of ex(9)/e, except for low
Prandtl numbers.

The relative magnitudes of en(3) and ey can
be compared with the magnitudes of the
turbulent velocity fluctuations (or turbulent
energy components) in the two directions u_§ and
uZ. References 5 and 7 show that uZ proceeds
rapidly but asymptotically toward zero at large
velocity gradients, whereas u_; decreases slowly
from the average of the energy components
uuy/3, which increases with velocity gradient.
Likewise from physical reasoning, it is clear that
the thermal eddy diffusivity is greater in the
direction of greater velocity fluctuations.

The existence of greater uZ than uZ has long
been suspected [11] and, in recent times, has
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FiG. 5. Temperature—-velocity correlation coefficients as a function of dimensionless velocity gradient. Prandtl number, 1.
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FIG. 6. Dimensionless 722, and 723, as a function of dimensionless velocity gradient. Prandtl number, 1.
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FiG. 7. Ratio of eddy diffusivity for heat transfer to that for momentum transfer as a function of dimensionless
velocity gradient.

been verified experimentally in tube and channel
flow [12], [13] and in boundary layers [14]. In
fact, the ordering of all three components of
turbulent energy (from largest to smallest) is the
same (u_f, :}E, zg) in those measurements and in
the present theory [7] at large velocity gradients.
Apparently, not all features of boundary layers
and tube flow are dependent on the presence of
boundaries, which are absent in the theory.
Deissler [2] compared the transient analysis
with a steady flow in a boundary layer or tube by
taking xaverage® ~ 1 from turbulent energy
spectral curves and 0-33 as a representative

HM B |

length, where & is the boundary-layer thickness
or the tube radius. If U is an average velocity and
dUi/dxs ~ U/8, then a* is of the order of
01 U8/». This implies that ep)/e is larger
than en)/e for Reynolds numbers of 104 and
over that are encountered in practice.

The results of the present analysis, together
with existing velocity-fluctuation measurements,
provide no support for an assumption of equal
thermal eddy diffusivities in the radial and cir-
cumferential directions {ex2) = ep(sy) in turbulent
tube flow. Instead, the relation en@) > en)
is indicated.
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Résumé—Des équations de corrélation pour des fluctuations statistiquement homogeénes de vitesse
et de température en deux points dans un écoulement infini de cisaillement uniforme sont obtenues
en tenant compte d’un gradient de température dans une direction arbitraire dans un plan normal a
la direction de I'écoulement. La turbulence isotrope excitée initialement décroit et devient anisotrope
avec le temps. Aprés avoir introduit des transformations de Fourier, les équations spectrales résult-
antes sont résolues dans le cas d’une turbulence faible dans lequel les corrélations triples sont négligées
par rapport aux corrélations doubles. Les spectres du transport de chaleur turbulent et de la fluctuation
de température sont calculés. Pour de grands gradients de vitesse sans dimensions, la diffusivité
thermique turbulente dans la direction normale au gradient de vitesse est beaucoup plus grande que
celle dans la direction du gradient de vitesse. La diffusivité thermique turbulente dans la direction du
gradient de vitesse tend 4 devenir égale 3 la diffusivité de quantité de mouvement turbulente & des
gradients élevés de vitesse.

Zusammenfassung—Unter Beriicksichtigung eines Temperaturgradienten von beliebiger Richtung in
einer Ebene senkrecht zur Strémungsrichtung werden an zwei Stellen in einer unendlichen, gleich-
formigen Scherstromung Korrelationsgleichungen fiir statisch homogene Geschwindigkeits- und
Temperaturschwankungen abgeleitet. Die urspriinglich angeregte isotrope Turbulenz klingt ab und
wird mit der Zeit anisotrop. Nach Einfiilhrung von Fourier-Transformationen werden die sich erge-
benden Spektralgleichungen fiir den Fall schwacher Turbulenz gelést, worin Dreifachkorrelationen
im Vergleich zu Zweifachkorrelationen vernachlissigt werden. Spektra des Warmeiibergangs und der
Temperaturschwankungen bei Turbulenz werden berechnet. Fiir grosse dimensionslose Geschwindig-
keitsgradienten wird der turbulente Wirmeaustausch normal zum Geschwindigkeitsgradienten viel
grosser als in Richtung des Geschwindigkeitsgradienten. Der turbulente Wiarmeaustausch in Richtung
des Geschwindigkeitsgradienten gleicht sich dem Impulsaustausch bei Turbulenz und bei grossen
Geschwindigkeitsgradienten an.

AngoTamusa—DB craTrbe BHBOJATCA KOPPEIALUOHHBIEC YPABHEHUA IIIA CTATUCTHYECKH IOMOTeH-
HHIX ITyJbcaluit CKOPOCTH M TeMIepaTypH B ABYX TOYKAX HEOTPAHHYEHHOTO DABHOMEPHOIO
TMOTOKA €O CIBUMOBHIMM HANPAMEHMAMHM B [ONYIIEHMM TEMIEpPaTypHOTO TPAajMeHTa B TIpO-
M3BOJILHOM HAIPABJIEHNH B IJIOCKOCTH, IEPHEHANKYIAPHON HanpaBIeHnIo TeueHnA. BriaBan-
Has BHAYAaJjie M30TPOIHAA TYPOYIeHTHOCTh BHPOMKIAETCA U CO BpEMEHEM CTAHOBHTCA AHM30-
tponuoit. Ilocie BBeseRUA npeobpasopanuit Oypbe NOgy4YeHHEE CIEKTPAJbHEIE YPaBHEHUA
PelIeHH 1A caydas ciaaboit TypOyseHTHOCTH, Ifle TPOfiHKe KOppedAnuM mpeHeGperanTcs
10 CPABHEHUIO C ABOKHBIMM KOPPEeJNAUMAMU. PaccunTaHbl CIIEKTPH TYPOYIeHTHHX MyIbcaumit
Teroo6MeHa U TeMuepaTypsl. IIpu Gonpiimx GeapasMepHHX rpafiMeHTaX CKOPOCTH BeINUYUHA
TypGyieHTHONt TeMIEepaTyPONPOBOAHOCTH B HANPABIEHNM, TI€PIEHIUKYIAPHOM TPATHEHTY
CKOpOCTM, HaMHOTO 6OJipllle, YeM B HAIpPaBleHuu rpagudenta ckopocru. TypOynenrHas
TeMIIEPATYPONPOBOAHOCTS B HANPABIEHUM TPAMEHTA CKOPOCTH CTPEMHTCA CPABHATHCH C
KoapPuIMenTOM TypOyTeHTHOM BABKOCTH NpU GOABIINX rPafueHTaX CKOPOCTH.



